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Abstract. Of the two-electron integrals occuring in the molecular context, the three-centre
Coulomb and hybrid integrals are numerous and difficult to evaluate to high accuracy. The analytical
and numerical difficulties arise mainly from the presence of the spherical Bessel function and
hypergeometric series in these integrals.

The present work accelerates the convergence of these integrals by first manipulating the
indices of the hypergeometric function and exploiting relationships to express this function as a
finite expansion and exploiting the properties of Bessel functions which satisfy second-order linear
differential equations. This is a suitable form of the integrand to apply the nonlinearD (due to
D Levin and A Sidi) andD̄ (due to A Sidi) transformations.

The extensive numerical results section illustrates the accuracy and unprecedented efficiency
of evaluation of these integrals.

1. Introduction

This paper continues the series of previous studies [1–3] concerning the rapid and efficient
evaluation of two-electron integrals to pre-determined accuracy for the development of
molecular electronic structure calculations over Slater-type orbitals (STO) [4–10].

The present work considers the method of applying the nonlinearD- and D̄-
transformations to accelerate the convergence of the semi-infinite oscillatory integrals involved
in analytical expressions of three-centre, two-electron Coulomb and hybrid integrals [11–16].

Of the exponential-type functions (ETFs), Slater-type functions (STFs) are the simplest
analytical functions but their use was limited because their multicentre integrals are extremely
difficult to evaluate for polyatomic molecules, particularly integrals involving two electrons.
Various studies have focussed on the use ofB functions proposed by Shavitt [17] and
introduced by Filter and Steinborn [18, 19]. These functions have a much more complicated
mathematical structure than STFs, but they have much more appealing properties in multicentre
integrals [18,19] and their Fourier transforms are exceptionally simple [20,22].

As in previous work [1–3], we apply the Fourier transform method which takes advantage
of the properties ofB functions [10,23,34]. These functions are linear combinations of Slater-
type orbitals [21, 36] and they are well adapted to the Fourier transform method as shown by
the Steinborn group [10,18–33].

Initial attempts to analyse the integrand all indicate that the principal source of difficulties
regarding accuracy and speed up of evaluation arises from the presence of the spherical
Bessel function and a hypergeometric series in the integrands. Bessel functions lead to rapid
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oscillations of the integrands, whereas the non-terminating hypergeometric seriesp+1Fp with
p = 0, 1, . . . converges as long as its argumentz satisfies|z| < 1. If |z| is sufficiently small,
convergence is usually good and the series can be used for the evaluation of the hypergeometric
function. If, however,|z| is slightly smaller than 1, convergence can become so slow that the
infinite series is computationally useless. Finally, for|z| > 1, the hypergeometric series
diverges. However, it is often possible to find an analytic continuation—for instance, with
the help of sequence transformations—which makes it possible to associate a finite value
to a divergent hypergeometric series even outside its circle of convergence. These distinct
properties can cause difficulty in the evaluation of the integrals. It is in fact not obvious that
the nonlinear transformations can be applied to such integrals.

After a re-arrangement of the combined indices appearing as arguments in the
hypergeometric functions, it is shown here that they can be expressed in the form of a finite
sum. This key analytical passage shows the hypergeometric function to result in the type of
integrand suitable for application of the nonlinearD- andD̄-transformations [37–40] which
have proved to be highly efficient in previous work [1–3].

In order for these nonlinear transformations to be applicable, it is required that the integrand
can be shown to satisfy a differential equation with coefficients having a power series expansion
in the reciprocal of the variable.

The symbolic computation systemAxiom [41] was used to derive the required linear
differential equation that the integrand of interest satisfies explicitly [1].

The integrals are evaluated numerically to unprecedented accuracy and with much reduced
calculation times compared with other techniques.

2. Some definitions

The complete set of definitions and properties will be found in [2]. The present definitions are
the minimum required.

TheB functions are defined as follows [18,19]:

Bmn,l(ζ, Er) =
(ζ r)l

2n+l(n + l)!
k̂n− 1

2
(ζ r) Yml (θEr , ϕEr ) (1)

where the reduced Bessel functionk̂n− 1
2
(ζ r) is defined [19] as

k̂n− 1
2
(ζ r) =

√
2

π
(ζ r)n−

1
2Kn− 1

2
(ζ r) (2)

= e−ζ r

ζ r

n∑
j=1

(2n− j − 1)!

(j − 1)!(n− j)! 2j−n(ζ r)j (3)

whereKn− 1
2

stands for the modified Bessel function of the second kind [42].

The Fourier transform̄Bmn,l(ζ, Ep) of Bmn,l(ζ, Er) is given [20,22] by

B̄mn,l(ζ, Ep) =
1

(2π)3/2

∫
Er

e−i Ep·Er Bmn,l(ζ, Er) dEr (4)

=
√

2

π
ζ 2n+l−1 (−i|p|)l

(ζ 2 + |p|2)n+l+1
Yml (θ Ep, ϕ Ep). (5)

The well known Rayleigh expansion of the plane wavefunctions is defined by

e±i Ep·Er =
+∞∑
l=0

l∑
m=−l

4π (±i)λ jl(| Ep||Er|) Yml (θEr , ϕEr ) [Yml (θ Ep, ϕ Ep)]
∗. (6)
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The Fourier integral representation of the Coulomb operator 1/|Er − ER1| is given [30,45]
by

1

|Er − ER1|
= 1

2π2

∫
Ek

e−iEk.(Er− ER1)

k2
dEk. (7)

The Gaunt coefficients are defined [47–53] as

〈l1m1|l2m2|l3m3〉 =
∫ π

θ=0

∫ 2π

ϕ=0
[Ym1
l1
(θ, ϕ)]∗Ym2

l2
(θ, ϕ)Y

m3
l3
(θ, ϕ) sinθ dθ dϕ. (8)

We define the generalized hypergeometric function [42,43] by

mFn(α1, α2, . . . , αm;β1, β2, . . . , βn; x) =
+∞∑
r=0

(α1)r (α2)r · · · (αm)rxr
(β1)r (β2)r · · · (βn)rr! (9)

where(α)n represents the Pochhammer symbol, which is defined [42,43] by

(α)0 = 1

(α)n = α(α + 1)(α + 2) · · · (α + n− 1) = 0(α + n)

0(α)

(10)

where0 stands for the Gamma function which is defined [42,43] by

0(z) =
∫ +∞

0
t z−1e−t dt. (11)

Forn ∈ N
0(n + 1) = n! = 1× 2× 3× · · · × n
0(n + 1

2) =
(2n)!

22n n!

√
π.

(12)

Form = 2, n = 1, the hypergeometric function [42,43] becomes

2F1(α, β; γ ; x) =
+∞∑
r=0

(α)r(β)rx
r

(γ )rr!
. (13)

The infinite series (9), (13) converge only for|x| < 1, and they converge quite slowly if
|x| is slightly less than one. The corresponding functions nevertheless are defined in a much
larger subset of the complex plane, including the case|x| > 1. Convergence problems of this
kind can often be overcome by using nonlinear sequence transformations [54].

We defineA(γ ) to be the set of infinitely differentiable functionsa(x), which have
asymptotic expansions in inverse powers ofx asx → +∞, of the form

a(x) ∼ xγ
(
α0 +

α1

x
+
α2

x2
+ · · ·

)
. (14)

Their derivatives of any order therefore have asymptotic expansions, which can be obtained
by differentiating that in (14) formally term by term.

3. Three-centre, two-electron Coulomb integrals over theB functions

The three-centre two-electron Coulomb integrals over theB functions are defined [9,23,44,46]
by

Kn2l2m2,n4l4m4
n1l1m1,n3l3m3

=
〈
B
m1
n1l1
(ζ1, Er) Bm3

n3l3
[ζ3, (Er ′ − ER3)]

∣∣∣∣ 1

|Er − Er ′| ×
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×
∣∣∣∣Bm2

n2l2
(ζ2, Er) Bm4

n4l4
[ζ4, (Er ′ − ER4)]

〉
Er,Er ′

(15)

=
∫
Er

∫
Er ′
[
B
m1
n1l1
(ζ1, Er)

]∗[
B
m3
n3l3
(ζ3, (Er ′ − ER3))

]∗ 1

|Er − Er ′|
×Bm2

n2l2
(ζ2, Er)Bm4

n4l4

[
ζ4, (Er ′ − ER4)

]
dEr dEr ′. (16)

By inserting the integral representation of the Coulomb operator, equation (7), in the above
equation, one can obtain

Kn2l2m2,n4l4m4
n1l1m1,n3l3m3

= 1

2π2

∫
Ex
ei Ex· ER4

〈
B
m1
n1l1
(ζ1, Er)

∣∣e−i Ex·Er ∣∣Bm2
n2l2
(ζ2, Er)

〉
Er

× 〈Bm4
n4l4
(ζ4, Er ′′)

∣∣e−i Ex· Er ′′ ∣∣Bm3
n3l3

[ζ3, ( Er ′′ − ( ER3− ER4))]
〉∗
Er ′′

dEx
x2
. (17)

Let us consider the term inEr:
kI1 =

〈
B
m1
n1l1
(ζ1, Er)

∣∣e−i Ex·Er ∣∣Bm2
n2l2
(ζ2, Er)

〉
Er . (18)

In this expression, it is clear that the twoB functions are centred on the same point. By
using equations (1), (3), one can easily find an expression for the radial part of the product of
the twoB functions, which is given by

Rad
{
B
m1
n1l1
(ζ1, Er)Bm2

n2l2
(ζ2, Er)

} = [2n1+l1+n2+l2(n1 + l1)!(n2 + l2)!
]−1
ζ
l1
1 ζ

l2
2

×
n1+n2∑
k=2

k2∑
i=k1

(2n1− i − 1)! (2n2 − i − 1)! ζ i−1
1 ζ k−i−1

2 rk+l1+l2−2 e−ζs r

(i − 1)! (n1− i)! (k − i − 1)! (n2 − k + i)! 2n1+n2−k (19)

where

k1 = max(1, k − n2) k2 = min(n1, k − 1) ζs = ζ1 + ζ2.

By using the above equation and introducing the expansion of e−i Ex·Er in terms of the Bessel
functions of the first kind (6), in (18) we can obtain an analytical expression ofkI1 given by

kI1 =
[
2n1+l1+n2+l2(n1 + l1)!(n2 + l2)!

]−1
ζ
l1
1 ζ

l2
2

√
π

2x

×
lmax∑

l=lmin,2

(−i)l 〈l1m1|lm1−m2|l2m2〉[Ym1−m2
l (θEx, ϕEx)]∗

×
n1+n2∑
k=2

k2∑
i=k1

[
(2n1− i − 1)! (2n2 − k + i − 1)! ζ i−1

1 ζ k−i−1
2

(i − 1)! (n1− i)! (k − i − 1)! (n2 − k + i)! 2n1+n2−k

]

×
∫ +∞

0
rk+l1+l2− 1

2Jl+ 1
2
(xr) e−ζs r dr (20)

where [50]

lmax= l1 + l2

lmin =
{

max(|l1− l2|, |m2 −m1|) if lmax + max(|l1− l2|, |m2 −m1|) is even

max(|l1− l2|, |m2 −m1|) + 1 if lmax + max(|l1− l2|, |m2 −m1|) is odd.

The subscriptl = lmin, 2 in the first summation symbol in (20) indicates that the summation
indexl runs in steps of 2 fromlmin to lmax.
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The semi-infiniter integral involved in the above equation, which we denoteĨ (x), has an
analytical expression given [42,43] by

Ĩ (x) =
∫ +∞

0
rk+l1+l2− 1

2Jl+ 1
2
(xr) e−ζs r dr

=
[
x/2ζs

]l+ 1
20(k + l1 + l2 + l + 1)

ζ
k+l1+l2+ 1

2
s 0(l + 3

2)

[
1 +

x2

ζ 2
s

]−k−l1−l2

× 2F1

(
l − k − l1− l2 + 1

2
,
l − k − l1− l2

2
+ 1; l +

3

2
;−x

2

ζ 2
s

)
. (21)

One can easily show that one of the arguments1
2(l−k− l1− l2 +1), 1

2(l−k− l1− l2)+1 of
the hypergeometric function is a negative integer. Thus, the hypergeometric series is reduced
to a finite expansion. The analytical expression involved in the above equation becomes

Ĩ (x) = 0(k + l1 + l2 + l + 1)

2l+
1
20(l + 3

2)
ζ nk−l−1
s [ζ 2

s + x2]−k−l1−l2
η′∑
r=0

(−1)r
(
η

2)r (
η+1
2 )r

(l + 3
2)r r! ζ

2r
s

x2r+l+ 1
2 (22)

where

η = l − k − l1− l2 + 1 η′ =
{
− 1

2η if η is even

η′ = − 1
2(η + 1) otherwise.

Special case

If l = l1 + l2 andk = 2, an expression for̃I (x) is given [42] by∫ +∞

0
r(l+

1
2 )+1Jl+ 1

2
(xr) e−ζs r dr = 2(l + 1)!ζs√

π

(2x)l+
1
2

(ζ 2
s + x2)l+

1
2

. (23)

Now, by applying the Fourier-transform method [10,23–32], to the term〈
B
m4
n4l4
(ζ4, Er ′′)

∣∣e−i Ex· Er ′′ ∣∣Bm3
n3l3

[ζ3, ( Er ′′ − ( ER3− ER4)]
〉∗
Er ′′

involved in (17), substituting the Rayleigh expansion of the plane wavefunctions (6), we obtain
an expression for these integrals involving a two-dimensional integral representation, which
is given [23,44] by

Kn2l2m2,n4l4m4
n1l1m1,n3l3m3

= 8(4π)3(2l3 + 1)!!(2l4 + 1)!!ζ l11 ζ
l2
2 ζ

2n3+l3−1
3 ζ

2n4+l4−1
4

× (n3 + l3 + n4 + l4 + 1)!

(n3 + l3)!(n4 + l4)!

lmax∑
l=lmin,2

(−i)l 〈l1m1|l2m2|lm1−m2〉

×
n1+n2∑
k=2

k2∑
i=k1

[
(2n1− i − 1)! (2n2 − i − 1)! ζ i−1

1 ζ k−i−1
2

(i − 1)! (n1− i)! (k − i − 1)! (n2 − k + i)! 2n1+n2−k

]

×
l4∑
l′4=0

l′4∑
m′4=−l′4

(i)l4+l′4(−1)l
′
4
〈l4m4|l4 − l′4m4 −m′4|l′4m′4〉
(2l′4 + 1)!![2 (l4 − l′4) + 1]!!

×
l3∑
l′3=0

l′3∑
m′2=−l′3

(i)l3+l′3
〈l3m3|l3− l′3m3−m′3|l′3m′3〉
(2l′3 + 1)!![2 (l3− l′3) + 1]!!
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×
l′3+l′4∑

l′=|l′3−l′4|
〈l′4m′4|l′3m′3|l′m′4 −m′3〉Rl

′
34Y

m′4−m′3
l′ (θ ER34

, ϕ ER34
)

×
∑
l34

〈l3− l′3m3−m′3|l4 − l′4m4 −m′4|l34m34〉

×
l+l34∑

λ=|l−l34|
iλ〈lm1−m2|l34(m4 −m′4)− (m3−m′3)|λµ〉

×
1l∑
j=0

(
1l

j

)
(−1)j

2n3+n4+l3+l4−j+1 (n3 + n4 + l3 + l4 − j + 1)!

×0(k + l1 + l2 + l + 1)

2l+
1
20(l + 3

2)
ζ nk−l−1
s

η′∑
r=0

(−1)r
(
η

2)r (
η+1
2 )r

(l + 3
2)r r! ζ

2r
s

×
∫ 1

s=0
sn33 (1− s)n44 Y

−µ
λ (θEv, ϕEv)

×
∫ +∞

x=0
[ζ 2
s + x2]−nkxnx+

1
2 jλ(vx)

k̂ν [R34γ (s, x)]

[γ (s, x)]nγ
dx ds (24)

where

k1 = max(1, k − n2) k2 = min(n1, k − 1) ζs = ζ1 + ζ2

|(l3− l′3)− (l4 − l′4)| 6 l34 6 (l3− l′3) + (l4 − l′4)
nx = l3− l′3 + l4 − l′4 + 2r + l nk = k + l1 + l2

n33 = n3 + l3 + l4 − l′4 n44 = n4 + l4 + l3− l′3
nγ = 2(n3 + l3 + n4 + l4)− (l′3 + l′4)− l′ + 1

µ = (m1−m2)− (m4 −m′4) + (m3−m′3)
[γ (s, x)]2 = (1− s)ζ 2

4 + sζ 2
3 + s(1− s)x2

η = l − k − l1− l2 + 1 1l = 1
2(l3 + l4 − l′)

η′ =
{
− 1

2η if η is even

− 1
2(η + 1) otherwise

Ev = s( ER3− ER4)− ER3 = s ER34− ER3

ν = n3 + n4 + l3 + l4 − l′ − j + 1
2

m34 = (m3−m′3)− (m4 −m′4).
The two-dimensional integral in the above equation, which will be referred to asT , is given
by

T =
∫ 1

s=0
sn33 (1− s)n44 Y

−µ
λ (θEv, ϕEv)

∫ +∞

x=0
[ζ 2
s + x2]−nk

× xnx+ 1
2 jλ(vx)

k̂ν [R34γ (s, x)]

[γ (s, x)]nγ
dx ds. (25)
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The inner semi-infinitex integral involved in the above equation, which will be referred
to asT̃ (s) is defined as

T̃ (s) =
∫ +∞

x=0
[ζ 2
s + x2]−nkxnx+

1
2 jλ(vx)

k̂ν [R34γ (s, x)]

[γ (s, x)]nγ
dx. (26)

The zeros of the integrand of̃T (s) are the zeros of the Bessel function of the first kind
Jλ+ 1

2
(vx):

Jλ+ 1
2
(z) =

( z
2

)λ+ 1
2

+∞∑
k=0

(−x2/4
)k

k! 0(λ + k + 1)
(27)

which because of the relationjλ(z) = [π/(2z)]
1
2 Jλ+ 1

2
(z) are forλ > 1 are identical with the

zeros of the spherical Bessel functionjλ.
We setjnλ,v = jnλ+ 1

2
/v, wherejn

λ+ 1
2

is thenth real zero of of the Bessel function of the first

kind Jλ+ 1
2
(x). j0

λ+ 1
2

is assumed to be 0. Then we can write the integralT̃ (s) (26) as follows:

T̃ (s) =
+∞∑
n=0

∫ jn+1
λ,v

jnλ,v

[ζ 2
s + x2]−nkxnx+

1
2 jλ(vx)

k̂ν [R34γ (s, x)]

[γ (s, x)]nγ
dx. (28)

The semi-infinitex integralT̃ (s)was evaluated using Gauss–Laguerre quadrature [23,33],
or using the infinite series, equation (28). Unfortunately, as we showed in previous work [1–3],
the use of Gauss-Laguerre quadrature even to high order gives inaccurate results and presents
severe numerical difficulties for this kind of oscillating integrand, especially for large values ofv

since the integrand oscillations become very rapid due to the spherical Bessel function [42,43]
and for s close to 0 or 1. If we lets = 0 or 1, the integrand will be reduced to the term
[ζ 2
s +x2]−nkxnx+

1
2 jλ(vx) because the term̂kν [R34γ (s, x)]/[γ (s, x)]nγ becomes a constant and

therefore the asymptotic behaviour of the integrand cannot be represented by a function of the
form e−λx g(x) whereg(x) is not a rapidly oscillating function. We also note that the region
close tos = 0 ands = 1 carry a very small weight because of the expressionsn33(1− s)n44.

The use of the infinite series (28) is prohibitively long for sufficient accuracy. The epsilon
algorithm of Wynn [56,58] or Levin’su transform [57,59,60], accelerate the convergence of
the infinite series but the accuracy is still insufficient, especially fors close to 0 or 1. Therefore
new numerical integration techniques are required. The present work concentrates on the use
of the nonlinearD- andD̄-transformations [37–40]. They are efficient in evaluating semi-
infinite integrals of rapidly oscillating functions which satisfy linear differential equations of
the formf (t) =∑m

k=1 pk(t) f
(k)(t).

The coefficientspk should satisfy the following conditions [42,43]:

1. pk are inA(ik) whereik 6 k for k = 1, 2, . . . , m;
2. lim

x→+∞p
(i−1)
k (x)f (k−i)(x) = 0, for k = i, i + 1, . . . , m; i = 1, . . . , m;

3. ∀l > −1,
m∑
k=1

l(l − 1) · · · (l − k + 1)pk,0 6= 1; pk,0 = lim
x→+∞ x

−kpk(x).

To apply these transformations successfully, there is no need to know explicitly the
differential equation that the integrand satisfies; knowledge of its existence and its order is
sufficient.

Let us consider the integrandF(x) of the integral (26). It has the form

F(x) = w1(x)w2(x)f (x)jλ(vx)
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where

f (x) = k̂ν [R34γ (s, x)]

[γ (s, x)]nγ
w1(x) = xnx+ 1

2 w2(x) =
[
ζ 2
s + x2

]−k−l1−l2
.

jλ(vx) satisfies a linear second-order differential equation given [42,43] by

jλ(vx) = − 2x

(vx)2 − λ2 − λj
(1)
λ (vx)− x2

(vx)2 − λ2 − λj
(2)
λ (vx) (29)

= q1,1(x)j
(1)
λ (vx) + q2,1(x)j

(2)
λ (vx). (30)

Assuming that

R34γ (s, x) = R34

√
(1− s)ζ 2

4 + sζ 2
3 + s(1− s)x2 =

√
β + αx2

the functionf (x) satisfies the linear second-order differential equations given [42,43] by

f (x) = x−1

[
(2ν + 1)τ +

δτ

x2

]
f (1)(x) +

[
τ − δτ

x2

]
f (2)(x) (31)

= q2,1(x)f
(1)(x) + q2,2(x)f

(2)(x) (32)

where

δ = −β
α

τ = 1

α
.

The coefficientsqi,1, equation (30) are inA(−1), and the coefficientsqi,2, equation (32) are
in A(0), for i = 1, 2.

The functionw1(x)w2(x) = xnx+ 1
2 [ζ 2

s + x2]−k−l1−l2, can be written as

w1(x)w2(x) = xnx−2(k+l1+l2)+ 1
2

[
1 +

ζ 2
s

x2

]−k−l1−l2
∈ A(nx−2(k+l1+l2)+ 1

2 ).

To prove the existence of the linear differential equation which the functionF(x) satisfies
and to determine its order, we state a lemma and corollaries which are proven in [37].

Lemma. If the functionsf and g satisfy linear differential equations of orderm and n
respectively, then their productfg satisfies a linear differential equation of order less than or
equal tomn.

Corollary 1. If the coefficients of the linear differential equations thatf andg satisfy have
asymptotic expansions in inverse powers ofx asx → +∞, then so do the coefficients of the
linear differential equation thatfg satisfies.

Corollary 2. If the functionf satisfies a linear differential equation of ordermwith coefficients
that have asymptotic expansions in inverse powers ofx asx → +∞ and ifg ∈ A(γ ), thenfg
satisfies a linear differential equation of order less than or equal tom with coefficients that
have asymptotic expansions in inverse powers ofx asx → +∞.

Now, it is clear that the functionf (x)jλ(vx) satisfies a linear differential equation of order
4 or less, with coefficientsqk that have asymptotic expansions of the inverse powers ofx as
x → +∞. In previous work [1], we used the symbolic computation systemAxiom [41] to
determine this linear differential equation explicitly, to confirm that it is of the form required
to apply theD- andD̄-transformations and its order is exactly 4.

The coefficientsqk for k = 1, 2, 3, 4; of the linear differential equation thatf (x)jλ(vx)
satisfies are linear combinations ofq1,i , q2,i , i = 1, 2 and their successive derivatives, thus
qk ∈ A(ik) whereik 6 0 for k = 1, 2, 3, 4.
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Corollary 2 shows thatF(x) = w1(x)w2(x)f (x)jλ(vx) satisfies a linear differential
equation of order 4, with coefficientspk that have asymptotic expansions in inverse powers of
x asx → +∞.

Now, by substitutingf (x)jλ(vx) byF(x)/w1(x)w2(x) in its linear differential equation,
one can easily find expressions forpk, k = 1, 2, 3, 4; depending onqk, k = 1, 2, 3, 4;
w(x) = w1(x)w2(x) and the first three successive derivatives of 1/w(x). The pk are in
A(ik), whereik 6 0, thuspk,0 = 0, k = 1, 2, 3, 4; then

∀l > −1
4∑
k=1

l(l − 1) · · · (l − k + 1)pk,0 = 0 6= 1.

The behaviour ofF(x) and its successive derivatives is dominated by the exponentially
decreasinĝkν , thus

lim
x→+∞ p

(i−1)
k (x) F (k−i)(x) = 0 k = i, i + 1, . . . ,4 i = 1, 2, 3, 4.

The conditions required to apply the nonlinearD- andD̄-transformations are satisfied.
The approximationsD(4)

m to T̃ , using theD-transformation, satisfyM = 4m + 1 equations
given [37] by

D(4)
m =

∫ xn

0
F(t) dt +

3∑
k=0

F (k)(xn) x
k+1
n

m−1∑
i=0

β̄k,i

xin
n = 0, 1, 2, . . . ,4m. (33)

Thexn are chosen to satisfy 0< x0 < x1 < · · · < x4m. The choice of thexn is important
and this point has been investigated by Sidi [37, 38]. It turns out that a suitable choice of the
xn can make theD-transformation more efficient for rapidly oscillating functions. The above
set of equations form a linear set ofM unknowns, namely,D(4)

m and theβ̄k,i for k = 0, 1, 2, 3;
i = 0, 1, . . . , m− 1.

By choosingxn = jn+1
λ,v , for n = 0, 1, 2, . . ., which are the zeros ofF(x), we reduce the

order of the above set of equations toM = 3m + 1 which can be re-written [37] as

D̄(4)
m =

∫ xn

0
F(t) dt +

3∑
k=1

F (k)(xn) x
k+1
n

m−1∑
i=0

β̄k,i

xin
n = 0, 1, 2, . . . ,3m. (34)

The above sets of equations (33) and (34) can, in general, be solved for theM unknowns
[37]. The convergence analysis of theD- andD̄-transformations has been taken up by Sidi [38].

4. Hybrid integrals over theB functions

The hybrid integrals overB functions are defined [9,23,44,46] by

Hn2l2m2,n4l4m4
n1l1m1,n3l3m3

=
〈
B
m1
n1l1
(ζ1, Er) Bm3

n3l3
(ζ3, Er ′)

∣∣∣∣ 1

|Er − Er ′|

∣∣∣∣Bm2
n2l2
(ζ2, Er)Bm4

n4l4
[ζ4, (Er ′ − ER)]

〉
Er, Er ′
. (35)

By inserting the integral representation of the Coulomb operator, equation (7), in the above
equation, we obtain

Hn2l2m2,n4l4m4
n1l1m1,n3l3m3

= 1

2π2

∫
Ex
e−i Ex· ER1

〈
B
m1
n1l1
(ζ1Er)

∣∣e−i Ex·Er ∣∣Bm2
n2l2
(ζ2Er)

〉
Er

× 〈Bm4
n4l4
(ζ4 Er ′′)

∣∣e−i Ex· Er ′′ ∣∣Bm3
n3l3

[ζ3( Er ′′ − ER1)]
〉∗
Er ′′

dEx
x2
. (36)
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Using the same calculations as for the three-centre, two-electron Coulomb integrals, we
obtain an expression forHn2l2m2,n4l4m4

n1l1m1,n3l3m3
involving a semi-infinite integral which will be referred

to asH̃(s) given [23,44] by

H̃(s) =
∫ +∞

x=0
[ζ 2
s + x2]−nkxnx+

1
2 jλ(vx)

k̂ν [R1γ (s, x)]

[γ (s, x)]nγ
dx (37)

=
+∞∑
n=0

∫ jn+1
λ,v

jnλ,v

[ζ 2
s + x2]−nkxnx+

1
2 jλ(vx)

k̂ν [R34γ (s, x)]

[γ (s, x)]nγ
dx (38)

whereEv = s ER1; λ, ζs, nk, nx, ν, nγ andγ (s, x) are defined according to equation (25).
Using the previous arguments, one can easily show that the integrand of the semi-infinitex

integral involved in the above equation, (25), which will be referred to asH̃(s), satisfies a linear
differential equation of order 4 of the form required to apply theD andD̄ transformations.
The order of the set of equations which gives the approximationD(4)

m isM = 4m + 1, but it
can be reduced to 3m + 1 by choosing thexn = jn+1

λ,v for n = 0, 1, 2, . . . ,3m.

5. Numerical results and discussion

Our numerical results are given in tables 1–12.
All the expressions are implemented in an original set of Fortran 77 subroutines.
The zeros of the spherical Bessel functionjλ(x) are computed to 20 correct decimals using

the symbolic programing languageAxiom.
Exact values were computed to 20 correct decimals using the infinite series (equation (28))

(for comparison and in order to establish the accuracy of the transformations methods).

Table 1. Evaluation of T̃ (s), equation (26), using thēD-transformation of orderm (D̄(4)
m ),

equation (34). Time is in milliseconds. (ν = nγ /2, ζ1 = ζ3 andζ2 = ζ4.)

s m nk nx nγ λ ζ3 ζ4 R3 R4 Error Time

0.01 3 2 0 5 0 4.50 0.75 7.75 3.25 0.84D−10 0.15
0.25 3 2 0 5 0 1.50 1.75 5.75 3.25 0.54D−13 0.15
0.50 2 2 0 5 0 0.75 1.50 2.75 1.45 0.14D−11 0.07
0.75 2 2 0 5 0 0.75 1.50 2.75 1.45 0.35D−12 0.07
0.99 2 2 0 5 0 3.25 2.50 6.75 2.45 0.28D−13 0.07
0.25 2 6 2 11 3 0.50 1.25 8.75 4.50 0.17D−10 0.07
0.01 2 6 4 13 4 0.25 1.50 3.75 1.50 0.84D−10 0.06
0.99 2 7 5 15 5 1.25 1.75 1.25 4.75 0.24D−12 0.07

Table 2. Evaluation ofT̃ (s), equation (26), using Levin’su-transform of orderm (um(S0)). Time
is in milliseconds. (ν = nγ /2, ζ1 = ζ3 andζ2 = ζ4.)

s m nk nx nγ λ ζ3 ζ4 R3 R4 Error Time

0.01 7 2 0 5 0 4.50 0.75 7.75 3.25 0.57D−10 0.97
0.25 8 2 0 5 0 1.50 1.75 5.75 3.25 0.48D−13 1.08
0.50 5 2 0 5 0 0.75 1.50 2.75 1.45 0.37D−11 0.71
0.75 5 2 0 5 0 0.75 1.50 2.75 1.45 0.25D−11 0.74
0.99 3 2 0 5 0 3.25 2.50 6.75 2.45 0.18D−12 0.47
0.25 4 6 2 11 3 0.50 1.25 8.75 4.50 0.43D−09 1.53
0.01 5 6 4 13 4 0.25 1.50 3.75 1.50 0.64D−10 2.32
0.99 4 7 5 15 5 1.25 1.75 1.25 4.75 0.28D−11 2.40
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Table 3. Evaluation ofT̃ (s), equation (26), using the epsilon-algorithm of Wynn of orderm (ε0
m).

Time is in milliseconds. (ν = nγ /2, ζ1 = ζ3 andζ2 = ζ4.)

s m nk nx nγ λ ζ3 ζ4 R3 R4 Error Time

0.01 6 2 0 5 0 4.50 0.75 7.75 3.25 0.91D−09 0.83
0.25 8 2 0 5 0 1.50 1.75 5.75 3.25 0.38D−10 1.09
0.50 4 2 0 5 0 0.75 1.50 2.75 1.45 0.26D−09 0.59
0.75 4 2 0 5 0 0.75 1.50 2.75 1.45 0.35D−09 0.60
0.99 4 2 0 5 0 3.25 2.50 6.75 2.45 0.21D−13 0.59
0.25 4 6 2 11 3 0.50 1.25 8.75 4.50 0.11D−08 1.53
0.01 6 6 4 13 4 0.25 1.50 3.75 1.50 0.22D−10 2.64
0.99 4 7 5 15 5 1.25 1.75 1.25 4.75 0.17D−10 2.38

Table 4. Evaluation ofH̃(s), equation (37), using thēD-transformation of orderm (D̄(4)
m ),

equation (34). Time is in milliseconds. (ν = nγ /2 ands = 0.99.)

m nk nx nγ λ ζ1 ζ2 ζ3 ζ4 R1 Error Time

3 2 0 5 0 1.00 1.00 1.00 1.00 6.50 0.441D−11 0.15
3 2 0 5 0 0.75 1.50 0.75 1.50 7.75 0.599D−10 0.15
3 3 1 7 1 1.25 2.50 1.25 2.50 2.00 0.200D−12 0.15
3 4 2 9 2 0.75 0.25 0.75 0.25 5.00 0.346D−10 0.15
4 4 2 9 2 0.75 0.25 0.75 0.25 5.00 0.533D−14 0.28
2 6 2 11 3 1.50 1.75 1.50 1.75 2.05 0.236D−15 0.07
2 6 4 13 4 0.25 2.50 0.25 2.50 2.25 0.541D−10 0.07
3 7 5 15 5 0.50 1.75 0.50 1.75 1.75 0.568D−13 0.15

Table 5. Evaluation ofH̃(s), equation (37), using Levin’su-transform of orderm (um(S0)). Time
is in milliseconds. (ν = nγ /2 ands = 0.99.)

m nk nx nγ λ ζ1 ζ2 ζ3 ζ4 R1 Error Time

7 2 0 5 0 1.00 1.00 1.00 1.00 6.50 0.239D−11 0.91
8 2 0 5 0 0.75 1.50 0.75 1.50 7.75 0.184D−10 1.05
6 3 1 7 1 1.25 2.50 1.25 2.50 2.00 0.621D−12 1.17
8 4 2 9 2 0.75 0.25 0.75 0.25 5.00 0.242D−10 2.06
8 4 2 9 2 0.75 0.25 0.75 0.25 5.00 0.242D−10 2.06
5 6 2 11 3 1.50 1.75 1.50 1.75 2.05 0.571D−15 1.78
6 6 4 13 4 0.25 2.50 0.25 2.50 2.25 0.327D−10 2.67
5 7 5 15 5 0.50 1.75 0.50 1.75 1.75 0.568D−13 2.85

Table 6. Evaluation ofH̃(s), equation (37), using the epsilon-algorithm of Wynn of orderm (ε0
m).

Time is in milliseconds. (ν = nγ /2 ands = 0.99.)

m nk nx nγ λ ζ1 ζ2 ζ3 ζ4 R1 Error Time

8 2 0 5 0 1.00 1.00 1.00 1.00 6.50 0.963D−11 1.08
8 2 0 5 0 0.75 1.50 0.75 1.50 7.75 0.444D−10 1.06
8 3 1 7 1 1.25 2.50 1.25 2.50 2.00 0.541D−12 1.54
8 4 2 9 2 0.75 0.25 0.75 0.25 5.00 0.428D−09 2.07
8 4 2 9 2 0.75 0.25 0.75 0.25 5.00 0.428D−09 2.06
6 6 2 11 3 1.50 1.75 1.50 1.75 2.05 0.375D−15 2.06
6 6 4 13 4 0.25 2.50 0.25 2.50 2.25 0.730D−09 2.67
8 7 5 15 5 0.50 1.75 0.50 1.75 1.75 0.568D−13 4.28
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Table 7. Evaluation of T , equation (25), using thēD-transformation of orderm (D̄(4)
m ),

equation (34). Time is in milliseconds. (ν = nγ /2,µ = 0, ζ1 = ζ3 andζ2 = ζ4.)

m n33 n44 nk nx nγ λ ζ3 ζ4 R3 R4 Error Time

3 1 1 2 0 5 0 4.50 0.75 7.75 3.25 0.66D−14 2.38
3 1 1 2 0 5 0 1.50 1.75 5.75 3.25 0.30D−14 2.40
4 2 1 3 1 7 1 3.25 2.50 6.75 2.45 0.75D−14 4.55
4 2 2 4 2 9 2 1.25 2.45 8.75 4.45 0.34D−15 4.54
2 3 2 6 2 11 3 0.50 1.25 8.75 4.50 0.15D−11 1.03
2 4 3 6 4 15 4 0.25 1.50 5.75 1.50 0.00D + 00 0.99
3 4 4 6 5 17 5 2.25 2.00 6.00 5.75 0.11D−11 2.38

Table 8. Evaluation ofT , equation (25), using Levin’su-transform of orderm (um(S0)). Time is
in milliseconds. (ν = nγ /2,µ = 0, ζ1 = ζ3 andζ2 = ζ4.)

m n33 n44 nk nx nγ λ ζ3 ζ4 R3 R4 Error Time

6 1 1 2 0 5 0 4.50 0.75 7.75 3.25 0.34D−13 13.10
7 1 1 2 0 5 0 1.50 1.75 5.75 3.25 0.31D−13 14.97
8 2 1 3 1 7 1 3.25 2.50 6.75 2.45 0.75D−14 24.82
8 2 2 4 2 9 2 1.25 2.45 8.75 4.45 0.35D−15 33.52
4 3 2 6 2 11 3 0.50 1.25 8.75 4.50 0.22D−11 24.13
5 4 3 6 4 15 4 0.25 1.50 5.75 1.50 0.11D−15 42.00
5 4 4 6 5 17 5 2.25 2.00 6.00 5.75 0.11D−11 51.62

Table 9. Evaluation ofT , equation (25), using the epsilon-algorithm of Wynn of orderm (ε0
m).

Time is in milliseconds. (ν = nγ /2,µ = 0, ζ1 = ζ3 andζ2 = ζ4.)

m n33 n44 nk nx nγ λ ζ3 ζ4 R3 R4 Error Time

6 1 1 2 0 5 0 4.50 0.75 7.75 3.25 0.93D−13 13.72
8 1 1 2 0 5 0 1.50 1.75 5.75 3.25 0.20D−13 17.64
8 2 1 3 1 7 1 3.25 2.50 6.75 2.45 0.75D−14 25.25
8 2 2 4 2 9 2 1.25 2.45 8.75 4.45 0.31D−15 33.94
6 3 2 6 2 11 3 0.50 1.25 8.75 4.50 0.14D−11 34.29
4 4 3 6 4 15 4 0.25 1.50 5.75 1.50 0.67D−13 35.32
6 4 4 6 5 17 5 2.25 2.00 6.00 5.75 0.11D−11 60.56

Table 10. Evaluation ofKn200,n400
n100,n300, equation (24) using thēD-transformation of orderm (D̄(4)

m ),

equation (34). Time is in milliseconds. (ER3 = (R3, 0, 0) and ER4 = (R4, 0, 0).)

m n1 n2 n3 n4 ζ1 ζ2 ζ3 ζ4 R3 R4 Error Time

3 1 1 1 1 2.50 1.25 4.50 0.75 7.50 2.00 0.79D−10 2.35
3 2 1 2 1 1.50 0.25 4.25 3.75 2.50 1.25 0.14D−13 2.37
3 2 2 2 2 3.45 0.25 1.50 0.50 3.50 1.50 0.15D−10 2.35
3 3 2 3 2 5.00 2.75 0.75 3.50 4.50 2.50 0.34D−10 2.32
4 3 3 3 3 1.95 3.45 1.50 1.50 5.00 3.25 0.34D−12 4.50
3 4 3 4 3 3.50 4.00 3.45 2.75 3.50 2.00 0.90D−09 2.33

All the finite integrals involved in (24), (25), (28), (34), (38) were evaluated using Gauss–
Legendre quadrature of order 16.

The set of equations (34) used in theD̄-transformation is solved using Gaussian elimination
with maximal column pivoting.
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Table 11. Evaluation ofKn200,n400
n100,n300, equation (24), using Levin’su-transform of orderm (um(S0)).

Time is in milliseconds. (ER3 = (R3, 0, 0), ER4 = (R4, 0, 0).)

m n1 n2 n3 n4 ζ1 ζ2 ζ3 ζ4 R3 R4 Error Time

6 1 1 1 1 2.50 1.25 4.50 0.75 7.5 2.00 0.45D−09 13.00
6 2 1 2 1 1.50 0.25 4.25 3.75 2.5 1.25 0.31D−11 16.50
8 2 2 2 2 3.45 0.25 1.50 0.50 3.5 1.50 0.36D−10 26.46
8 3 2 3 2 5.00 2.75 0.75 3.50 4.5 2.50 0.25D−09 32.52
7 3 3 3 3 1.95 3.45 1.50 1.50 5.0 3.25 0.74D−08 34.94
7 4 3 4 3 3.50 4.00 3.45 2.75 3.5 2.00 0.10D−08 41.70

Table 12. Evaluation ofKn200,n400
n100,n300, equation (24), using the epsilon-algorithm of Wynn of order

m (ε0
m). Time is in milliseconds. (ER3 = (R3, 0, 0), ER4 = (R4, 0, 0).)

m n1 n2 n3 n4 ζ1 ζ2 ζ3 ζ4 R3 R4 Error Time

6 1 1 1 1 2.50 1.25 4.50 0.75 7.5 2.00 0.13D−08 14.53
6 2 1 2 1 1.50 0.25 4.25 3.75 2.5 1.25 0.12D−10 18.01
8 2 2 2 2 3.45 0.25 1.50 0.50 3.5 1.50 0.37D−09 28.36
8 3 2 3 2 5.00 2.75 0.75 3.50 4.5 2.50 0.32D−08 34.36
8 3 3 3 3 1.95 3.45 1.50 1.50 5.0 3.25 0.14D−06 41.19
8 4 3 4 3 3.50 4.00 3.45 2.75 3.5 2.00 0.24D−08 48.81

The calculation time using thēD-transformation and the other alternatives are computed
using an IBM RS 6000 340.

The tabulated numerical results clearly illustrate the speed up obtained with theD̄-
transformation as compared with its counterparts (Levin’su-transform and the epsilon
algorithm of Wynn). This is seen both for the three-centre Coulomb (K) and hybrid (H)
two-electron integrals. These results confirm the advantages of the strategy involvingD̄-
transformation as already noted in previous work. The tables compare evaluations to a highly
adequate pre-determined accuracy and in general theD̄(4)

m values are more accurate than those
obtained with Levin’su-transform and epsilon algorithm of Wynn, whereas the calculation
times for theD̄ approach are at least 10 times quicker.

Note also that the evaluation of such integrals using the Gauss–Laguerre formulae even
to high order leads to limited and insufficient accuracy and prohibitive calculation times.

6. Conclusion

The three-centre Coulomb and hybrid two-electron integrals appear in molecular calculations.
An atomic orbitals basis of Slater type functions can be expressed asB functions in order to
apply the Fourier transform method.

The analytic expressions of theB functions and their Fourier transforms involved a product
of Bessel functions which satisfy linear differential equations are of the form required to apply
theD- andD̄-transformations used in our previous integral work.

The numerical results show this approach yields values for these integrals to a pre-
determined high accuracy and with unprecedented speed.
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